The Cray Compiler Environment

Nathan Wichmann
wichmann@cray.com

mailto:wichmann@cray.com

Cray Opteron Compiler: Brief History of Time =

Cray has a long tradition of high performance compilers on Cray
platforms (Traditional vector, T3E, X1, X2)

Vectorization
Parallelization

Code transformation
More...

Investigated leveraging an open source compiler called LLVM

First release December 2008

C=RA0Y

THE SUPERCOMPUTER COMPANY

Technology Sources

Fortran Source C and C++ Source C and C++ Front End
supplied by Edison Design
Group, with Cray-developed
code for extensions and
interface support

Cray Inc. Compiler
Technology

X86 Code Generation from
Open Source LLVM, with
additional Cray-developed
optimizations and interface
support

CRRANY”
Why a Cr‘ay X86 Compiler? THE SUPERCOMPUTER COMPANY

Standard conforming languages and programming models
Fortran 2003
UPC & CoArray Fortran

* Fully optimized and integrated into the compiler
* No preprocessor involved
e Target the network appropriately:
GASNet with Portals
DMAPP with Gemini & Aries
Ability and motivation to provide high-quality support for custom

Cray network hardware

Cray technology focused on scientific applications

Takes advantage of Cray’s extensive knowledge of automatic
vectorization

Takes advantage of Cray’s extensive knowledge of automatic
shared memory parallelization

Supplements, rather than replaces, the available compiler
choices

THE SUPERCOMPUTER COMPANY

Cray Opteron Compiler: How to use it

Make sure it is available
module avail PrgEnv-cray

To access the Cray compiler
module load PrgEnv-cray

To target the various chip
module load xtpe-[barcelona,shanghi,istanbul]

Once you have loaded the module “cc” and “ftn” are the Cray
compilers

Recommend just using default options
Use —rm (fortran) and —hlist=m (C) to find out what happened

man crayftn

Cray Opteron Compiler: Current Capabilities

Excellent Vectorization
Vectorize more loops than other compilers

OpenMP 3.0
Task and Nesting

PGAS: Functional UPC and CAF available today
C++ Support

Automatic Parallelization
Modernized version of Cray X1 streaming capability
Interacts with OMP directives

Cache optimizations
Automatic Blocking
Automatic Management of what stays in cache

Prefetching, Interchange, Fusion, and much more...

Cray Opteron Compiler: Current Strengths

Loop Based Optimizations

Vectorization

OpenMP
Autothreading

Interchange
Pattern Matching
Cache blocking/ non-temporal / prefetching

Fortran 2003 Standard; working on 2008
PGAS (UPC and Co-Array Fortran)

Some performance optimizations available in 7.1
Optimization Feedback: Loopmark
Focus

THE SUPERCOMPUTER COMPANY

Cray Opteron Compiler: Directives T surencouruTEn comeanr

Cray compiler supports a full and growing set of directives
and pragmas

ldirS concurrent

1dirS ivdep

ldirS interchange

IdirS unroll

1dirS loop_info [max_trips] [cache_na] ... Many more
1dirS blockable

man directives
man loop _info

CRANY

THE SUPERCOMPUTER COMPANY

Loopmark: Compiler Feedback

e Compiler can generate an filename.lst file.
e Contains annotated listing of your source code with letter indicating important
optimizations
%%% Loopmark Legend %%%
Primary Loop Type Modifiers
a - vector atomic memory operation
A - Pattern matched b - blocked

C - Collapsed f - fused

D - Deleted | - Interchanged

E - Cloned m - streamed but not partitioned

| - Inlined p - conditional, partial and/or computed

M - Multithreaded r - unrolled

P - Parallel/Tasked s - shortloop

V - Vectorized t - array syntax temp used
W - Unwound w - unwound

Example: Cray loopmark messages for Resid

or cc—hlist=m ...
do i3=2,n3-1
do i2=2,n2-1
doil=1,n1
ul(il) = u(il,i2-1,i3) + u(i1,i2+1,i3)

> +u(il,i2,i3-1) + u(il,i2,i3+1)

u2(i1) = u(il,i2-1,i3-1) + u(i1,i2+1,i3-1)

> +u(il,i2-1,i3+1) + u(il,i2+1,i3+1)

enddo

doil=2,n1-1

r(i1,i2,i3) = v(il,i2,i3)
-a(0) * u(i1,i2,i3)
-a(2) *(u2(i1) + ui(i1-1) + ui(ii+1))
-a(3) *(u2(i1-1) + u2(i1+1))

enddo

enddo
enddo

CRANY”

THE SUPERCOMPUTER COMPANY

_ —
Example: Cray loopmark messages for Resid (cont) mesmeemrescn

ftn-6289 ftn: VECTOR File = resid.f, Line = 29

A loop starting at line 29 was not vectorized because a recurrence was found on "U1" between lines
32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 29
A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30

A loop starting at line 30 was not vectorized because a recurrence was found on "U1" between lines 32
and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30

A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31

A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31

A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37

A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37

A loop starting at line 37 was vectorized.

Cray Opteron Compiler: Current Weaknesses

Tuned Performance

Vectorization (We vectorize too much)
Non-temporal caching

Cache blocking

Many end-cases

Spilling
Scheduling

Still a young compiler

THE SUPERCOMPUTER COMPANY

Byte Swapping e rencou et st

-hbyteswapio
Link time option
Applies to all unformatted fortran IO
Assign command
With the PrgEnv-cray module loaded do this:
setenv FILENV assign.txt
assign -N swap_endian g:su
assign -N swap_endian g:du

Can use assign to be more precise

OpenMP e

* OpenMP is ON by default

Optimizations controlled by —Othread#
To shut off use —Othread0 or —xomp or —hnoomp

» Autothreading is NOT on by default;

-hautothread to turn on
Modernized version of Cray X1 streaming capability
Interacts with OMP directives

If you do not want to use OpenMP and have OMP directives
in the code, make sure to make a run with OpenMP shut
off at compile time

New feature: OMP TASK e A A

An OpenMP task is an explicit region of code whose
execution can be deferred and/or executed in parallel with
the surrounding code

Completion is guaranteed by synchronization or end of
parallel region

Must be contained inside a OMP parallel region

A task is “put on a queue” to be executed “later”

Any thread of the same parallel region that is sitting on a sync
point can grab a task off the queue and execute it

Sort of like “futures” but with limitations
Don’t have ID’s, must wait for all or none
But maybe are good enough?

MUIti-level OpenMP sssssss RCOMPUTER COMPANY

Nested OpenMP
OMP parallel region inside of an OMP parallel region

“New threads” are used at each level

Need to use new ENV VARS to control nesting
Need to use ENV VARS not in OMP standard for better control

OMP Tasks inside of parallel regions
Can be nested
Can be both more and less natural way of programming

. CRRANY”
M u Itl-level O pe n IVI P THE SUPERCOMPUTER COMPANY

ISomp parallel do ...
doi=1,4
call complex_matmuil(...)

enddo

Subroutine complex_matmul(...)
ISomp parallel do private(j,jend,jsize)! num_threads(p2)
do j=1,n,nb
jend = min(n, j+nb-1)
jsize=jend-j+1
call zgemm(transA,transB, m,jsize,k, &
alpha,A,IdA,B(j,1),ldb, beta,C(1,j),IdC)

enddo

CRRANY
Case Study: PARQUET R AT Ay

4 x ZGEMM 1000x1000

80

70

60

50

40

GFlops

30

20

10

.

Serial ZGEMM High Level OMP Nested OMP Nested OMP Nested OMP Low level OMP
ZGEMM 4x1 ZGEMM 3x3 ZGEMM 4x2 ZGEMM 2x4 ZGEMM 1x8

Parallel method and Nthreads at each level

CRRANY
Case Study: PARQUET R AT Ay

4 x ZGEMM 100x100

35

30

25

20

15

10
W
)

Serial ZGEMM High Level OMP Nested OMP Nested OMP Low Level ZGEMM
ZGEMM 4x1 ZGEMM 3x3 ZGEMM 4x2 1x8

GFlops

Parallel method and Nthreads at each level

Lessons from nested parallel regions P SirencomPuTEn comPanY

Nested omp can GREATLY expand the amount of
parallelism one can attack using OpenMP

Most people set the environment variable via
omp_num_threads

This, as currently defined, is not adequate for nested parallel
regions

Using the “num_threads” clause may be both tricky and
impractical

Cray has invented its own cray_omp_num_threads variable

Nested parallel regions is a relatively static distribution

OMP tasking may be a way of getting around some or all of
these issues

Cray Compiler: Future Capabilities

7.2 release planned for Q1 10
Mostly about performance
Magny Cours support

And beyond....
Fortran 2008
More tasking capabilities
Optimized PGAS
Support for AVX (256 bit vectors)
Support for Intel

THE SUPERCOMPUTER COMPANY

Cray Compiler: Final Thoughts e SurencouroTER courar

Cray Compiler is an interesting alternative for some
codes

Unique and different capabilities can result is
significantly different performance.

Gemini and PGAS will make the Cray compiler even
more relevant.

CRANY

THE SUPERCOMPUTER COMPANY

